A New Method of Probability Density Estimation with Application to Mutual Information Based Image Registration

نویسندگان

  • Ajit Rajwade
  • Arunava Banerjee
  • Anand Rangarajan
چکیده

We present a new, robust and computationally efficient method for estimating the probability density of the intensity values in an image. Our approach makes use of a continuous representation of the image and develops a relation between probability density at a particular intensity value and image gradients along the level sets at that value. Unlike traditional sample-based methods such as histograms, minimum spanning trees (MSTs), Parzen windows or mixture models, our technique expressly accounts for the relative ordering of the intensity values at different image locations and exploits the geometry of the image surface. Moreover, our method avoids the histogram binning problem and requires no critical parameter tuning. We extend the method to compute the joint density between two or more images. We apply our density estimation technique to the task of affine registration of 2D images using mutual information and show good results under high noise.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Subsampling Method for 3D Multimodality Medical Image Registration Based on Mutual Information

Mutual information (MI) is a widely used similarity metric for multimodality image registration. However, it involves an extremely high computational time especially when it is applied to volume images. Moreover, its robustness is affected by existence of local maxima. The multi-resolution pyramid approaches have been proposed to speed up the registration process and increase the accuracy of th...

متن کامل

Probability Density Estimation using Isocontours and Isosurfaces: Application to Information Theoretic Image Registration

We present a new, geometric approach for determining the probability density of the intensity values in an image. We drop the notion of an image as a set of discrete pixels, and assume a piecewise-continuous representation. The probability density can then be regarded as being proportional to the area between two nearby isocontours of the image surface. Our paper extends this idea to joint dens...

متن کامل

A Support Vector Method for Estimating Joint Density of Medical Images

Human learning inspires a large amount of algorithms and techniques to solve problems in image understanding. Supervised learning algorithms based on support vector machines are currently one of the most effective methods in machine learning. A support vector approach is used in this paper to solve a typical problem in image registration, this is, the joint probability density function estimati...

متن کامل

A Viscous Fluid Model for Multimodal Non-rigid Image Registration Using Mutual Information

We propose a multimodal free-form registration algorithm based on maximization of mutual information. The warped image is modeled as a viscous fluid that deforms under the influence of forces derived from the gradient of the mutual information registration criterion. Parzen windowing is used to estimate the joint intensity probability of the images to be matched. The method is evaluated for non...

متن کامل

Bayesian Multimodality Non-rigid Image Registration via Conditional Density Estimation

We present a Bayesian multimodality non-rigid image registration method. Since the likelihood is unknown in the general multimodality setting, we use a density estimator as a drop in replacement to the true likelihood. The prior is a standard small deformation penalty on the displacement field. Since mutual information-based methods are in widespread use for multimodality registration, we attem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006